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Abstract

Decision makers in epidemiology and other disciplines are faced with the daunting challenge of designing interventions
that will be successful with high probability and robust against a multitude of uncertainties. To facilitate the decision
making process in the context of a goal-oriented objective (e.g., eradicate polio by 2018), stochastic models can be used to
map the probability of achieving the goal as a function of parameters. Each run of a stochastic model can be viewed as a
Bernoulli trial in which ‘‘success’’ is returned if and only if the goal is achieved in simulation. However, each run can take a
significant amount of time to complete, and many replicates are required to characterize each point in parameter space, so
specialized algorithms are required to locate desirable interventions. To address this need, we present the Separatrix
Algorithm, which strategically locates parameter combinations that are expected to achieve the goal with a user-specified
probability of success (e.g. 95%). Technically, the algorithm iteratively combines density-corrected binary kernel regression
with a novel information-gathering experiment design to produce results that are asymptotically correct and work well in
practice. The Separatrix Algorithm is demonstrated on several test problems, and on a detailed individual-based simulation
of malaria.
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Introduction

Decision makers are tasked with the challenging job of

determining how best to achieve specific program goals despite

large amounts of uncertainty. In public health, for example, policy

makers must decide which interventions to use and when, as well

as the demographic sub-population to target, so as to achieve

programmatic goals. Global eradication of a disease is a

particularly relevant example of one such goal. Malaria is the

target of a Global Eradication Campaign announced in 2007, and

a successful campaign will most likely require combining several

different interventions, with the particular combination tailored to

the local transmission setting [1]. Similarly, poliomyelitis has been

the target of a global eradication initiative since 1988 [2], wherein

oral [3] and inactivated [4] polio vaccines are distributed through

various routine and supplementary immunization activities [5].

To achieve these goals with high probability, complex

interactions between decisions (e.g. deploy bednets to 80% of the

population) and mechanistic uncertainties (e.g. the extent to which

mosquitoes feed indoors) must be considered systematically.

Computer models enable these interactions to be simulated

thousands of times in silico before trying in the real world. When

using a model to evaluate an objective, each stochastic run can be

viewed as a Bernoulli trial in which ‘‘success’’ is returned if and

only if the programmatic goals are achieved in simulation. Many

trials (simulations) are required to adequately characterize the

underlying probability of success for each parameter configura-

tion. Mapping the success probability across parameter space is

highly desired, however the operational regime consists of a

stochastic model that can take hours to produce each binary

outcome. Efficient algorithms are thus required to best use limited

computational resources, particularly now that increasingly-

detailed computational models are being used directly in guiding

policy decisions in HIV [6, 7], and in campaign design for

influenza [8–11], polio [12], and malaria [13–17].

Fortunately, many campaigns do not require achieving full

population coverage in order to succeed in interrupting transmis-

sion, with the required level depending on the disease’s basic

reproductive number. Combined with the phenomenon that

increasing coverage becomes increasingly expensive for marginal

benefits, threshold phenomenon suggest that the probability

success can saturate close to 100% while campaign costs continue

to rise with coverage. Thus, regions of campaign and parameter

space in which success is almost guaranteed are not particularly

interesting. Similarly, regions in which the probability of success is

low are uninteresting. The key algorithmic challenge lies in

concentrating computational resources in regions of parameter

space in which the success probability is near an intermediate

target value, such as 80% or 95%.

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e103467

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0103467&domain=pdf


Related work has primarily focused on analytical techniques for

deterministic simulation models. For simulations of this type, the

only source of output variation comes from (epistemic) uncertainty

about parameter values. Epistemic variation is classically analyzed

for uncertainty and sensitivity using numerical sampling methods

such as Latin Hypercube Sampling (LHS), see [18,19]. Stochastic

models, in which aleatory uncertainty stemming from randomized

components is included, are more difficult to analyze because each

parameter configuration maps to a multitude of outcomes.

Nonetheless, some of the techniques from deterministic model

analysis have been adapted to work with stochastic simulation

models by running the model many times for each parameter

configuration, and using the average as if it were deterministic

[20–25]. A second approach to the analysis of stochastic models is

the response surface methodology, see [26–30]. The main idea is

to fit an easy-to-evaluate metamodel [31] to the mean of a

collection of simulation runs for analysis [32] or optimization [33].

While typically based on polynomials, numerous metamodels have

been explored including radial basis functions [34], neural

networks [35], thin-plate splines [36], support vector machines,

and Gaussian processes (kriging) [37,38].

Another area of related work to consider is experiment design,

the problem of choosing which simulations to run on the next

iteration. Simple designs include factorial and fractional factorial

designs [39] that improve upon varying one parameter at a time

by exploring locally extreme variations. Distance maximizing and

information theoretic approaches have been explored [40], with

much of the work directed towards designing computer experi-

ments [41–44]. More advanced and computationally intensive

approaches to experiment design include a class of algorithms that

seek to optimize the expected information returned by the samples

by minimizing a loss function [45,46] or maximizing the expected

information gain [47–49].

None of the above work satisfactorily addresses the needs of

decision makers, who need efficient algorithms to draw meaningful

conclusions from detailed stochastic simulations with respect to a

goal-oriented objective. To address these needs, we present the

Separatrix Algorithm, which directs computational resources

towards identifying and resolving combinations of policies and

uncertain model parameters that will achieve the goal successfully

with a given probability. The algorithm was named after a

mathematical term, separatrix, representing a boundary separat-

ing behavioral modes. Here, we use the term as a synonym for the

desired isocline of the underlying success probability function.

While in this work we present the Separatrix Algorithm in the

context of computational epidemiology, the methods extend

directly to other computational disciplines and further to the

scientific domain, wherein laboratory experimentation replaces

computer simulation.

The main contributions of this work include (1) an iterative

approach to stochastic model evaluation in the context of a goal-

oriented objective that consists primarily of (2) a consistent kernel-

based regression algorithm that estimates the full distribution of

the probability of achieving the goal at a point based on observed

simulation outcomes, and (3) a design-of-experiments algorithm

that places the next M sample points so as to strategically gain

information about the separatrix. These elements are illustrated in

Figure 1.

Methods

The Separatrix Algorithm combines binomial regression, based

on novel kernel methods, with an experiment design procedure,

called igBDOE, that maximizes expected information gain. The

algorithm progresses by iteratively choosing new parameter

configurations to simulate (i.e. sample points) from a D-dimen-

sional box, called the parameter space or sample space, that we will

denote by B.

Simulations that are complete will be denoted by Xi[B and

Yi[ 0,1f g, i~1, . . . ,N, representing the sample points and

outcomes, where

Yi*Bernoulli f (Xi)ð Þ: ð1Þ

The success probability function, denoted by f : B?½0, 1�,
represents the true probability of achieving the goal on a particular

simulation trial. While this function is unknown in practice (the

purpose of the Separatrix Algorithm is to estimate this function

near the user-specified isocline), it is safe to assume that f is

sufficiently regular in terms of continuity and differentiability.

Let M denote the number of sample points to be selected on

each iteration, and note that M should be selected to maximally

leverage parallel computing resources. These ‘‘next points’’ to

sample will be selected by the Separatrix Algorithm so as to gather

information about an isocline, denoted by f �, of the underlying

success probability function. We will refer to this isocline of the

success probability function as the separatrix, see Figure 1.

The first samples are selected using a space filling algorithm,

such as LHS. Then, the main iteration loop consists of two

Figure 1. The Separatrix Algorithm addresses two main sub-
problems. The first is to use observed binary outcomes (top) to
estimate the probability of success (bottom), and the second is to
choose new points to sample. This is done so as to identify a particular
isocline, called the separatrix, as illustrated by the dashed gray line.
doi:10.1371/journal.pone.0103467.g001
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primary steps. The inference step takes available samples, X , and

outcomes, Y , as inputs, and returns a probability density function

for the probability of success at one or more inference points. The

design of experiments step uses the data to select subsequent sample

points. Each of these algorithms will be described in detail in the

following sections, and are summarized in Algorithm Summary

S1.

Stochastic Inference using Kernel Regression
The inference portion of the Separatrix Algorithm uses a novel

variation of kernel regression to estimate the distribution of the

probability of success at a specified inference point, X �[B. This

differs from most kernel methods, which simply estimate a single

value, representative of the mean, at each inference point.

The output from each simulation is passed through a Boolean

test function that returns ‘‘true’’ only if the user-specified goal is

achieved. Because each simulation is an independent Bernoulli

trial, if one or more simulation are run with a fixed parameter

configuration, the resulting probability of success after observing a
successes and b failures would have a beta distribution,

f*Beta az1,bz1ð Þ: ð2Þ

However, it is inefficient to run multiple simulations with a fixed

parameter configuration, and we often wish to compute the

distribution at a point for which no outcomes have been observed.

Our approach to the inference problem at X � is to first estimate

the effective number of observed successes, âa(X �), and failures,

b̂b(X �), using kernel methods, and then plug these estimates into

the beta distribution,

f̂f (X �)*Beta âa(X �)z1,b̂b(X �)z1
� �

: ð3Þ

Kernel methods, commonly used in density estimation and

regression, compute the result value as a (kernel) weighted average

of ‘‘nearby’’ values. Nearness is determined by the spatial scale of

the kernel, called the bandwidth. Many techniques have been

proposed for selecting the kernel bandwidth, here we derive the

kernel scale from the distance to the kth nearest neighbor (KNN).

When the values are sampled uniformly, classical kernel

methods are consistent, meaning that the estimate is asymptoti-

cally correct in probability. However, direct application of these

concepts results in an unacceptably large bias when the data are

not sampled uniformly. This bias in classical kernel methods is

unacceptable for direct application in the Separatrix problem

because the very objective of the algorithm is to concentrate

samples near the separatrix, resulting in a non-uniform sampling

density that becomes increasingly non-uniform as additional

samples are collected.

To minimize bias with highly non-uniform sampling, the

inference portion of the Separatrix Algorithm uses a density

correction factor in the kernel. Bias correction has been used in

binary kernel regression by Hazelton [50], however our approach

differs. We proceed by describing the two main sub-steps of the

inference portion of the Separatrix Algorithm: (1) estimate the

sample point density using standard kernel methods, and (2) apply

a density-corrected kernel to estimate the number of successes and

failures, which then feeds into a beta distribution to finally

approximate the distribution of the probability of success at each

inference point.

Density Estimation. The density estimator uses standard

variable kernel smoothing techniques [51] to produce an estimate

of the sample point density at each sample point. While any

consistent density estimator could be used, variable kernel

methods are known to produce a bona fide density estimate that

is globally consistent, however the edges converge at a slower rate

[52].

The density estimate at point x[B is computed as

r̂r(x)~
1

N

XN

j~1

1

hrdj,kNN,r

K
x{Xj

hrdj,kNN,r

 !
: ð4Þ

Here, dj,kNN,r
is the distance from sample point j to the kNN,r-th

nearest sample point. The variable kernel method employs a

bandwidth that is proportional, with constant h, to this distance.

Many authors have proposed methods to select kNN,r automat-

ically; we use the parametric form

kNN,r(N)~cNc, ð5Þ

for constants c and c.

Due to extreme density variations driven by the desire to sample

near the separatrix, we replace the global N in (5) with a local

estimate of the number of sample points at each inference point,

N̂N(x), using a scale model,

N̂N(X �)~
XN

i~1

exp {
(Xi{X �)2

2s2
N̂N

 !
, ð6Þ

in which sN̂N is a fixed bandwidth. Note the lack of kernel

normalization above. Instead, the kernel is one when Xi~X � so

that a sample at X � counts as one ‘‘effective’’ sample, but samples

further from X � count only partially in the total.

Success Probability Distribution Inference. With the

density estimates available, the effective number of successes and

failures at X � are calculated as,

âa(X �)~m(X �)
XN

i~1

Lg(Xi,X
�)Yi

r̂r(Xi)

� �
ð7Þ

b̂b(X �)~m(X �)
XN

i~1

Lg(Xi,X
�)(1{Yi)

r̂r(Xi)

� �
: ð8Þ

Here, m is a scaling factor (to be explained shortly), and

Lg : B2?Rz is a kernel function with bandwidth g. We use a

squared exponential kernel with a simple S-type (i.e. diagonal)

bandwidth matrix, for which the scaling is determined by the

distance to the kNN,i-th nearest neighbor, as in (5), although the

parameters are not necessarily the same. Again, we replace the

global N by N̂N(x) from the scale model.

The scaling constant, denoted by m, is selected so that the

number of success and failure outcomes at X � sums to the

estimated ‘‘effective number of samples’’ at X � from the scale

model (6),

The Separatrix Algorithm
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m(X �)~
N̂N(X �)P

N
i~1

Lg(Xi,X
�)

r̂r(Xi)

� � : ð9Þ

This scaling by m in the calculation of âa and b̂b has no impact on

mode of the beta distribution (8), but does affect higher order

moments.

The distribution of the probability of achieving the goal at each

test point is approximated by a beta distribution (3). The

approximation comes from the fact that the true posterior has a

beta distribution only for repeated simulations (i.e. fixed param-

eters).

Design of Subsequent Experiments
The second main step of the Separatrix Algorithm is a design-

of-experiments (DOE) procedure that selects M new sample points

in a manner that actively focuses computational effort on

interesting regions of parameter space. This is counter to

traditional factorial, space-filling, and variance-reducing ap-

proaches, which sample globally. Traditional Bayesian design-of-

experiments (BDOE) methodology, see the original work [53] or a

review [54], also places samples globally. However, samples in

BDOE are actively placed so as to maximize the expected

information gain, as measured by a Kullback-Liebler (KL) pseudo-

metric. The experiment design portion of the Separatrix

Algorithm uses an ‘‘interest guided’’ (igBDOE) approach in which

the distributions used in the KL calculation are tailored in a novel

way that encourages subsequent samples to focus on identifying

the separatrix.

More specifically, the BDOE methodology chooses new input

configurations, Xz[BM , that are expected to maximally distin-

guish the posterior distribution, which includes the M proposed

samples, from the prior distribution, which does not:

Xz~

arg max
x[BM

EY (x)½
ð
B

DKL(f̂f t j X ,Yð ÞEf̂f t j X ,Y ,x,Y (x)ð Þ)dt�:
ð10Þ

Here, t[B is a test point at which the prior and posterior

distributions are to be compared, f̂f (tD . . . ) is the inferred success

probability distribution at t, x is the collection of M sample points

in consideration, and Y (x)[ 0,1f gM
is the corresponding outcome

vector. In a small abuse of notation, EY (x) denotes expectation

with respect to the distribution over outcomes at x, which in turn is

calculated from the expected value of f̂f (xDX ,Y ). Finally, DKL

denotes the Kullback-Liebler divergence between distributions v
and w,

DKL(vEw)~Ev log (v=w): ð11Þ

Without modification, traditional Bayesian experiment design

selects new inputs that are globally important.

In contrast, the interest-guided BDOE (igBDOE) algorithm used

in the Separatrix Algorithm focuses subsequent samples on the

regions of parameter space for which the success probability is

near f �. Rather than applying the traditional BDOE methodology

to the beta distribution from the inference algorithm, igBDOE

applies a similar approach to a discretization we call the interest
distribution,

q0(tD X ,Y )~Prob f̂f (tDX ,Y )vf �
� �

ð12Þ

q1(tD X ,Y )~1{q0(tD X ,Y ): ð13Þ

Here q0(tD X ,Y ) is the total probability mass of distribution

f (tDX ,Y ) that lies below the interest level, and q1(tD X ,Y ) is the

mass above the interest level. Similarly, qf0,1g(tDX ,Y ,x,Y (x)) is the

total probability mass of distribution f (tDX ,Y ,x,Y (x)) that lies

below (above) the interest level. In this way, the experiment design

procedure selects new inputs that are expected to move mass

across separatrix. As a consequence, the procedure samples

primarily in and around the desired isocline, as these locations

have the greatest potential to change the interest distribution, and

occasionally samples far away when uncertainty is sufficiently high.

Practically, Bayesian approaches to experiment design tend to

be computationally intensive. To make the computation tractable,

we apply a number of simplifications. In place of the integral in

(10), we restrict consideration to T test points tj[B, j~1, . . . ,T .

Instead of choosing all M new sample points jointly, we choose M
points that independently result in a large expected KL divergence.

As a final simplification for speed and tractability, we optimize not

over the entire parameter space (x[BM ), but rather select from a

finite number CwM of candidate sample points,
x5fj1,j2, . . . ,jCg, ji[B. With these simplifications, the igBDOE

chooses M of C candidate points so as to maximize the sum of the

expected (over outcomes) mean (over test points) KL divergence,

Xz~ max
I5f1,...,Cg

X
i[I

J(ji), subject to DI D~M ð14Þ

where

J(ji)~EY (ji )
1

T

XT

j~1

DKL q(tj DX ,Y )Eq(tj DX ,ji,Y ,Y (ji))
� �" #

: ð15Þ

Selection of the T test points and C candidate points can have a

significant impact on the performance of the algorithm. A simple

approach is to choose these points using a LHS design. However,

the resolution of test and sample points quickly becomes the

limiting step as the separatrix becomes increasingly refined. To

increase the density of test and sample points in places where the

KL divergence is high, we propose sampling test and candidate

points from the variance of the interest distribution,

p(t)~q0(tDX ,Y )q1(tDX ,Y ) ð16Þ

~q0(tDX ,Y ){q2
0(tDX ,Y ): ð17Þ

In practice, these samples are obtained using Markov chain

Monte Carlo (MCMC). An optional post-processing step slightly

diffuses the points by adding a random value sampled from a

narrow multivariate normal distribution, having diagonal standard

deviation denoted by sb, to each point from MCMC. The number

The Separatrix Algorithm
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of candidate points can also be varied, and in practice we find

choosing C~lM with l[½2,5� works well for all applications.

Finally, to prevent the algorithm from being overly greedy when the

number of observed samples is small, we initially limit the number of

subsequent sample points selected by igBDOE to a fraction, z, of the

total number of samples, e.g. M~ min (floor(zN),M). The

remaining M{M samples, if any, are obtained using LHS.

Results

To illustrate the main contributions of this work, we have

prepared a variety of results that demonstrate the Separatrix

Algorithm, which has been implemented in Matlab [55]. A basic

implementation of the algorithm is available in Source Code S1.

We begin with a simple one-dimensional problem to show the full

distribution of the estimated success probability function, and also

to clearly illustrate the experiment design process for generating

subsequent sample points. The methods are then applied to a two-

dimensional problem with a known test function that resembles

those encountered in epidemiological decision making. Finally, an

agent-based stochastic simulation model of malaria [56,57] is

examined to show how the Separatrix Algorithm applies to a

computer simulation having three separatrix dimensions. This

simulation model was coded in C++ by a team of researchers and

developers at the Institute for Disease Modeling in Bellevue, WA.

Simulations were invoked on a supercomputer running WindowsH

HPC Server with more than 5000 cores, however we choose M

between 50 and 250 cores for these examples. The job submission

pipeline and commissioning scripts use a mixture of Matlab, Python,

and C#.

Example One: Hyperbolic Tangent in 1D
The basic concepts of the method can be seen most vividly on a

simple one-dimensional toy problem. Denoting by x the indepen-

dent parameter, the true probability of success for this example is a

hyperbolic tangent,

f (x)~
1

2
tanh (10(x{0:6))z1ð Þ, B~½0,1�: ð18Þ

This test function is plotted in Figure 2A, along with outcomes

observed at N0~50 initial samples that were drawn using a LHS

design. For display purposes, the posterior beta distribution (3) was

evaluated at 50 equally spaced inference points, and is displayed in

hypercolor along with the mode.

For this example, we have selected a target success probability of

f �~70%, for which the sinusoidal model crosses this target at a

separatrix of x~0:642. Additional samples were selected M~50 at

a time until a total of Nf ~1000 samples had been observed. At

most floor(0:25N) samples are added using the igBDOE algorithm

Figure 2. One-dimensional hyperbolic tangent analysis. (A) Shown are the true success probability function (dashed line), 50 LHS samples (full
and empty circles), the inferred distribution (hypercolor), and the most likely value (black line). The vertical magenta line is at the separatrix
corresponding to an interest level of f �~0:7. (B) The probability density after observing Nf ~1000 samples using the Separatrix Algorithm. Note that
the estimate is tight near the separatrix. (C) The inner workings of the igBDOE algorithm. First, test and sample points are loaded from the previous
iteration in which they were sampled from the variance of the interest distribution, solid black (left axis), which in turn is computed from the interest
distribution: q0 is in blue-dash and q1 is in red dash-dot. The expected KL divergence is plotted for each of the candidate sample points (green circles,
right axis). The best M of these candidates, indicated by red crosses, will be selected. (D) The final density estimate shows that the igBDOE algorithm
was placing samples in and around the separatrix. Ticks on the x-axis represent samples.
doi:10.1371/journal.pone.0103467.g002

The Separatrix Algorithm
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Table 1. Parameters values.

Param Meaning Example 1 Example 2 Example 3

f � Interest level 0:7 0:6 0:5

N0 Initial number of samples 50 50 250

M New points per iteration 50 50 250

Nf Final number of samples 1000 1500 2500

C Number of candidates 200 200 1000

T Number of test points 100 100 100

z Max fraction from igBDOE 0:25 0:25 0:5

hr Density bandwidth scaling 0:3 0:3 0:3

kNN,r KNN for density 0:5N0:8 0:5N0:67 0:5N0:57

kNN,i KNN for inference 4N̂N0:8 4N̂N0:67 4N̂N0:57

sN̂N Counting kernel scale for N̂N 0:02 0:05 0:07

sb Blur kernel bandwidth 0:02 0:02 0:02

Separatrix parameter values used in the three example presented in this paper.
doi:10.1371/journal.pone.0103467.t001

Figure 3. One-dimensional hyperbolic tangent performance. For the one-dimensional hyperbolic tangent test function (18), the Separatrix
Algorithm outperforms Latin hypercube sampling and traditional BDOE on a likelihood-based performance metric (19).
doi:10.1371/journal.pone.0103467.g003

The Separatrix Algorithm
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per iteration, and remaining sample points come from LHS. A

complete list of parameters is available in Table 1.

Upon termination, the probability density clearly reveals the

location at which the test function crosses 70%, see Figure 2B. The

interest-guided experiment design procedure has concentrated

samples at the separatrix, see the sample point density estimate in

Figure 2D.

The inner workings of the igBDOE experiment design can be

seen in Figure 2C, which shows selection of the final 50 samples.

Here, the interest distribution is shown as a red dashed line for q0

(12) and as a blue dashed-dot line for q1 (13). The variance of the

interest distribution (17), from which test and candidate points are

sampled, is shown in black solid. The expected KL divergence (10)

is evaluated at each candidate sample point, the green circles, and

the best M~50 candidates, indicated by the red crosses, will be

simulated on the next iteration.

To compare the performance of the Separatrix Algorithm to

Latin hypercube sampling and traditional BDOE, we evaluated a

metric for 60 random number seeds of each algorithm. In

particular, we computed the mean log likelihood at Ne evaluation

point(s), Xei
, on the separatrix,

L~
1

Ne

XNe

i~1

log
(f �)âa(Xei )(1{f �)b̂b(Xei )

B(âa(Xei
)z1,b̂b(Xei

)z1)

 !
: ð19Þ

The function denoted by B in the denominator of the log is the

beta function. For this one-dimensional example, we used a single

evaluation point on the f �~0:7 separatrix, Xe1
~0:642. The

Separatrix Algorithm outperforms LHS and traditional BDOE, as

can be seen in Figure 3.

Example Two: Hyperbolic Tangent in 2D
To extend the analysis to a two-dimensional example, we

consider a test function based on a product of two hyperbolic

tangents,

f (x,y)~1=4 tanh (10x{5)z1ð Þ tanh (3y{0:9)z1ð Þ, ð20Þ

where B~½0,1�|½0,1�.
This test function resembles certain epidemiological systems in

that the probability of success is low without the interventions (0,0)
and high with both interventions at full coverage (1,1) and that the

probability surface can have different steepness and critical

coverage for different interventions.

We configured the interest-guided experiment design procedure

to select the best M~50 points from C~200 candidates, and

terminated when Nf ~1500. Parameters were generally similar to

those used in the previous example, see Table 1.

The final estimate from a typical separatrix analysis is shown in

Figure 4. As with the one-dimensional example, the fit is not

intended to be good away from the separatrix. In fact, the interest-

guided experiment design has again done well to place samples in

and around the separatrix, see Figure 4C. The separatrix is more

difficult to identify along the horizontal portion than the vertical

portion due to the slope. The Separatrix Algorithm has

correspondingly placed more samples along the horizontal portion

of the separatrix, resulting in reduced variance there.

We have again compared the Separatrix Algorithm to a LHS

experiment design, using the mean log-likelihood metric (19). This

metric naturally balances accuracy and precision, and was

evaluated at Ne~20 points spaced equally in arc-length along

the separatrix. The results show that the Separatrix Algorithm

significantly and consistently outperforms LHS, see Figure 5.

Figure 4. Two-dimensional separatrix results. The inference
algorithm was applied at all points on a regular 30|30 grid after
collecting Nf ~1500 samples. Here, we display the mode (A), variance (B),
and samples (C). The dashed line in (A) is the true separatrix, and the solid
line is the estimate. Circles and crosses in (C) represent failures and
successes, respectively, and red dots indicate samples selected on the final
iteration.
doi:10.1371/journal.pone.0103467.g004
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Example Three: Individual-Based Malaria Simulation
In epidemiology, three-dimensional parameter sweeps are often

conducted to explore trade-offs between competing alternatives in

the context of a third parameter. We now apply the Separatrix

Algorithm to a detailed computer simulation of malaria [56] for

which the true response function is unknown.

This separatrix analysis considers the goal of local malaria

elimination using an intervention composed of insecticide treated

bednets (ITN) and a pre-erythrocytic vaccine (PEV). Each

individual-based computer simulation returns true if and only if

malaria is eliminated from the model within 10 years. The success

of such a campaign will depend on the local burden of disease and

on the extent to which mosquitoes feed indoors. The malarial

disease burden is typically quantified by the entomological

inoculation rate (EIR), which quantifies the number of infectious

bites received by a typical person in one year. The higher the EIR,

the more difficult elimination will be. ITNs are well characterized,

here we as assume that bednets are distributed to 80% of the

population, block 90% of indoor bites, and kill 60% of the

mosquitoes attempting indoor feeds. Naturally, bednets will not be

as useful of an intervention against predominantly outdoor-feeding

mosquitoes.

It is in this context that we apply the Separatrix Algorithm to

explore the potential impact of a PEV, when used in tandem with

ITN. Vaccines against malaria are currently under development,

so it is not clear what efficacy and durability to expect. Here, we

have assumed a vaccine efficacy against infection that decays

exponentially with a half-life of 3:5 years, and use separatrix

analysis to explore initial efficacy.

We initially selected N0~500 samples points using a LHS

design. The Separatrix Algorithm then iteratively selected

M~250 samples from C~1000 candidates. As with the previous

examples, igBDOE was initially complimented by LHS. The

algorithm was terminated once Nf ~2500 simulations had been

conducted. Parameter values can be found in Table 1. The

resulting separatrix plot, variance, and sample points are displayed

in Figure 6.

From the separatrix plot, local elimination is possible in

simulated scenario using ITN alone (PEV efficacy of zero) if the

intensity of malaria transmission (EIR) is sufficiently low and

mosquitoes tend to feed indoors where bed nets are effective [58].

Increasing vaccine efficacy expands the region of EIR/mosquito

behavior space in which elimination is achievable.

Discussion

To effectively leverage a stochastic simulation model in the goal-

driven decision making process, we have presented the Separatrix

Algorithm. The tool has potential uses in a multitude of domains,

Figure 5. Two-dimensional hyperbolic tangent performance.
The Separatrix Algorithm again outperforms Latin hypercube sampling
on the mean log likelihood metric, which was evaluated at 20 points
spaced evenly in arc-length along the separatrix.
doi:10.1371/journal.pone.0103467.g005

Figure 6. Malaria model separatrix results. The separatrix (A),
variance (B), and samples with density (C) after simulating the malaria
model Nf ~2500 times.
doi:10.1371/journal.pone.0103467.g006
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and has been discussed here in the context of infectious disease

policy making. The algorithm proceeds iteratively wherein each

iteration combines binary kernel regression with an interest-guided

experiment design. This procedure was demonstrated on three

example problems in which the Separatrix Algorithm was able to

clearly isolate combinations of intervention and model parameters

for which the goal is achieved with a user-specified probability of

success.

In order to apply the Separatrix Algorithm, a few preliminary

requirements must be satisfied. These consist primarily of a

stochastic simulation with externally configurable parameters,

user-specified Boolean function measuring the success of each

simulation, and a target success probability isocline. Additionally,

the user is required to select the region of parameter space to be

explored, and it assumed that parameters not explored by the

algorithm have been calibrated externally. The parameter space,

B, need not come directly from the input space, but instead could

be mapped through a coordinate transformation to address

parametric synergies. For example in malaria, immune response

thresholds to within-host parasite densities and detection thresh-

olds for within-host parasite densities can be moved together

without substantially affecting the proportion detected, so some

parameter explorations may choose a single dimension for both

parameters. Also, the ability of the local vector population to

transmit can be represented at a given point in time by a single

quantity called the vectorial capacity [59].

The Separatrix Algorithm has several important limitations that

should be considered. The problem being addressed by the

algorithm is inherently difficult, and the complexity grows

combinatorially with the number of dimensions. Therefore,

separatrix exploration of a large parameter space (e.g. Dw6, see

[60]) requires access to a powerful workstation to run the

algorithm and a supercomputer to run the stochastic simulations.

With increasing dimensions, the number of sample points (e.g.

simulations) required to achieve a specified level of confidence in

the location of the separatrix increases. The computational

complexity of the Separatrix Algorithm, neglecting the optional

Markov chain Monte Carlo step, scales as O((TzC)N2).
However much of the repeated computation can be cached.

The algorithm has several user-configurable parameters,

including the initial number of samples, the number of samples

to add on each iteration, kernel bandwidth scale factors, and so on.

These parameters are inherently problem specific, and yet all three

examples above were computed using similar parameters, see

Table 1. Also, some analyses will be more challenging than others,

depending in part on the slope of the success probability function

at the separatrix. Further work is needed to determine optimal

parameter values for a given problem, and automatic parameter

selection could increase algorithm performance. Until an auto-

matic procedure for selecting parameter values is available, a

technician familiar with the algorithm, parameters, and imple-

mentation may be required to assist the decision maker in

conducting the analysis.

More time-consuming kernel methods use complex bias

reduction techniques based on pilot estimates, and cross-validation

or other optimization procedures for bandwidth selection.

However, the separatrix context differs from other applications

because additional data can be collected. Time spent perfecting

the inference or experiment design is time that could otherwise be

used to generate new outcomes. For a simulation that takes days to

run, it may be worthwhile to use more advanced, and

computationally-intensive, kernel methods. However, for simula-

tions taking on the order of minutes to hours, the methods we have

outlined above provide a balance between experiment design and

simulation.

Conclusions

We have presented the Separatrix Algorithm for evaluating a

detailed stochastic simulation with respect to a goal-oriented

question and user-specified probability of success. The method

combines bias-corrected kernel smoothing with an interest-guided

experiment design to efficiently focus computational resources on

identifying the desired separatrix. The method was applied to

several toy problems representing typical response functions and to

a stochastic epidemiological simulation of malaria.

Additional layers of model analysis can be included once the

separatrix has been located by the Separatrix Algorithm. For

example, if costing and resource allocation models are available,

they can be evaluated and optimized within the separatrix.

Additionally, parameters within the separatrix can be preferen-

tially selected based on a prior or posterior parameter distribution.

The method could be improved in several ways. Numerous

advances in multivariate kernel techniques have been published in

the past few years. We have primarily implemented well-

established techniques, but newer algorithms and automatic

bandwidth selection procedures could improve the quality of

separatrix plots at the cost of additional computing time.

Additionally, we did not implement any correction at the edges

of the parameter space. Higher-order kernels and local linear

models are known to perform better at the edges.

There is no way to avoid the fact that parameter space

exploration requires a considerable amount of computing power.

Users lacking access to a large-scale computer should consider

cloud computing, running smaller iterations, or reducing the

number of dimensions. In any case, the Separatrix Algorithm uses

fewer samples to achieve a desired level of precision, thereby

saving time and/or money.

The experiment design procedure selects M points indepen-

dently. A significant performance benefit could be achieved if

these points could be selected jointly, even if this means selecting

only two at a time.

Finally, epidemiological models often exhibit monotonic

responses. A powerful addition to the Separatrix Algorithm would

be to enable user specification or automatic detection of

monotonic dimensions. The approach could be based on recent

advances in monotonic kernel methods [61].

Supporting Information

Algorithm Summary S1 Algorithm Summary S1 contains
a mathematical description of the Separatrix Algorithm.
(PDF)

Source Code S1 Source Code S1 contains demonstration
code written in Matlab.
(ZIP)
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